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Geometric Motivation:



Linear Classification

Goal:
Find a linear classification function that best fits the data

points
class labels

Find s.t.
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Given Points xi ∈ Rn , and class labels yi ∈ ±1
When looking at the optimisation problem of the SVM , we want to learn a linear

decision function to correctly classify our points
i.e. find ω ∈ Rn, b ∈ R s.t. sign(ωT xi + b) ≈ yi

We denote the indices corresponding to both classes by
I+ := {i | yi = +1} and
I− := {i | yi = −1}

min
ω,b,ρ

||ω||2 − 2ρ

s.t. yi(ωT xi + b) ≥ ρ ∀i (1)

one can observe that its dual,

min
α

∑
i,j αiαj yiyj xT

i xj

s.t. αi ≥ 0 ∀i (2)
∑

I+
αi = 1

∑
I−

αi = 1

which is nothing else than polytope distance:

min
α

||
∑

I+
αixi −

∑
I−

αixi||2

s.t. αi ≥ 0 ∀i (3)
∑

I+
αi = 1

∑
I−

αi = 1

The inseparable case: Outliers: ,

min
ω,b,ρ

1
2 ||ω||

2 − 2ρ + µ
∑

i ξi

s.t. yi(ωT xi + b) ≥ ρ− ξi, ξi ≥ 0 ∀i (4)
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the dual is

min
α

∑
i,j αiαj yiyj xT

i xj

s.t. 0 ≤ αi ≤ µ ∀i (5)
∑

I+
αi = 1

∑
I−

αi = 1

with
ω =

1
2

∑

i

αiyixi (6)
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Kernels
Idea: Before doing linear separation, map all points 

to some higher-dimensional space:
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Kernels
map all points to a higher-dimensional space, xi !−→ Φ(xi). the dual changes the following
way:

min
α

∑
i,j αiαj yiyj Φ(xi)T Φ(xj)

min
α

∑
i,j αiαj yiyj K(xi, xj)

... (5)

with ω = 1
2

∑
i αiyiΦ(xi) and

⇔ ωT xk + b = 1
2

∑
i αiyiΦ(xi)T Φ(xk) + b = 1

2

∑
i αiyiK(xi, xk) + b
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min
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1
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∑
i ξi
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α

∑
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i xj

s.t. 0 ≤ αi ≤ µ ∀i (7)
∑

I+
αi = 1

∑
I−
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with
ω =

1
2

∑

i

αiyixi (8)
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Mercer’s Theorem :
easy:
If K(., .) is a symmetric, positive semi-definite matrix, then we know that there exists Φ(.)
s.t. K(x, y) = 〈Φ(x),Φ(y)〉 ∀x, y ∈ Rn

hard:
Let X a compact subset of Rn, and K(., .) ∈ L∞(X2) be a symmetric and positive semi-
definite function.
Then there exists a series of mappings Φk(.) from X to some k-dimensional Hilbert space
such that 〈Φk(x),Φk(y)〉 uniformly converges to K(x, y) for almost all x, y ∈ X.

If K(xi, xj) is a symmetric, positive semi-definite matrix, then we know that there ex-
ists Φ(.) s.t. K(xi, xj) = 〈Φ(xi),Φ(xj)〉 ∀i, j

Polynomial Kernel: K(x, y) = 〈x, y〉d, d ∈ N
〈x, y〉d = (

∑
i xiyi) (

∑
i xiyi) . . . (

∑
i xiyi) = 〈(xi1xi2 . . . xid), (yi1yi2 . . . yid)〉

Polynomial Kernel...: K(x, y) = (〈x, y〉+ 1)d, d ∈ N
(〈x, y〉+ 1)d = (

∑
i xiyi + 1) . . . (

∑
i xiyi + 1) = 〈(xi1xi2 . . . xik)k≤d, (yi1yi2 . . . yik)k≤d〉

Gauss Kernel: K(x, y) = e−||x−y||2/2σ

The inseparable case: Outliers:
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ω,b,ρ

1
2 ||ω||2 − 2ρ + µ

∑
i ξi

s.t. yi(ωT xi + b) ≥ ρ− ξi, ξi ≥ 0 ∀i (6)

the dual is

min
α

∑
i,j αiαj yiyj xT

i xj
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Effect of the mapping
to the optimisation problem:
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Decision function can also be evaluated by only using the kernel:
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Popular Kernels
Polynomial Kernel
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Figure 1: Samples of the USPS digit images.

where U (d × n) and V (n × n) satisfy U′U = I, V′V = I, and Λx is a n × n diagonal matrix containing

the “singular values” on its diagonal. Plugging these together with (3) into (1), we have

C = XX′

= (UΛxV
′)(VΛxU

′)

= UΛ2

xU
′. (4)

Comparing (2) and (4), we can see that U in SVD is exactly the U in eigen-decomposition, i.e., the first d

columns of U in SVD contains the d eigenvectors of PCA. Moreover, we have Λc = Λ2

x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:
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x, i.e., the squares of

the singular values of X are the eigenvalues of C.

3 Command Syntax

The program should be coded in C++ and run under Visual Studio 2003/2005. The source file containing

the main() function must be named pca1nn.cpp, and the command syntax is:

pca1nn train.dat train.lbl ! test.dat test.lbl output.txt

Here,

• train.dat is the file containing the training images. We use a d-dimensional vector xi = [xi1, xi2, ..., xid]′

to represent each image, where d is the number of pixels in the image. The format of train.txt is then:
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3 Command Syntax
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to represent each image, where d is the number of pixels in the image. The format of train.txt is then:
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Usage in Handwritten Digit Recognition



Kernels
map all points to a higher-dimensional space, xi !−→ Φ(xi). the dual changes the following
way:

min
α

∑
i,j αiαj yiyj Φ(xi)T Φ(xj)

min
α

∑
i,j αiαj yiyj K(xi, xj)

... (5)

with ω = 1
2

∑
i αiyiΦ(xi) and

⇔ ωT xk + b = 1
2

∑
i αiyiΦ(xi)T Φ(xk) + b = 1

2

∑
i αiyiK(xi, xk) + b

Mercer’s Theorem:
Let K(., .) : Rn × Rn −→ R by any symmetric, positive semidefinite L∞ function. Then
there exists a mapping Φ(.) from Rn to some Hilbert space H such that K(x, y) uniformly
converges to 〈Φ(x),Φ(y)〉 for all x, y ∈ Rn.

Polynomial Kernel: K(x, y) = 〈x, y〉d, d ∈ N

Gauss Kernel: K(x, y) = e−||x−y||2/2σ

The inseparable case: Outliers: ,

min
ω,b,ρ

1
2 ||ω||2 − 2ρ + µ

∑
i ξi

s.t. yi(ωT xi + b) ≥ ρ− ξi, ξi ≥ 0 ∀i (6)

the dual is

min
α

∑
i,j αiαj yiyj xT

i xj

s.t. 0 ≤ αi ≤ µ ∀i (7)
∑

I+
αi = 1

∑
I−

αi = 1

with
ω =

1
2

∑

i

αiyixi (8)

2

Gauss Kernel

Example:

Two Spirals

Dataset

! "#$%&'()*#+$&,*$'#-.&+$
-&$/#0,#1-2)3$4212')3$
5(-2'26)-2&1$7/458$)1+$
-.#$9#)*#:-$;&21-$
<3=&*2-.'$79;<8$21$
7>##*-.2 !"#$%?@$ABBB8?

! "#$'#):,*#+$:(##+$,:21=$
1,'C#*$&D$E#*1#3$
#F)3,)-2&1:?

! "#$%&'()*#+$-.#$D21)3$
:&3,-2&1$,:21=$-.#$(#*%#1-$
&D$:,((&*-$F#%-&*:?

! "#$%&'()*#+$
(#*D&*')1%#$)%%,*)%G$CG$
,:21=$)$-#:-$:#-?

! H1$)33$%):#:$I#$,:#+$
:&3,-2&1$')*=21$7+2:-)1%#$
C#-I##1$-I&$%3)::#:8$-&$
'#):,*#$%3)::2D2#*$
:2'23)*2-G?

String Kernels

b l a  b l a h  a g t a a t c a t c g c t a



Geometric Motivation:

Outliers

?
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Given Points xi ∈ Rn , and class labels yi ∈ ±1
When looking at the optimisation problem of the SVM , we want to learn a linear

decision function to correctly classify our points
i.e. find ω ∈ Rn, b ∈ R s.t. sign(ωT xi + b) ≈ yi

We denote the indices corresponding to both classes by
I+ := {i | yi = +1} and
I− := {i | yi = −1}

min
ω,b,ρ

||ω||2 − 2ρ

s.t. yi(ωT xi + b) ≥ ρ ∀i (1)

one can observe that its dual,

min
α

∑
i,j αiαj yiyj xT

i xj

s.t. αi ≥ 0 ∀i (2)
∑

I+
αi = 1

∑
I−

αi = 1

which is nothing else than polytope distance:

min
α

||
∑

I+
αixi −

∑
I−

αixi||2

s.t. αi ≥ 0 ∀i (3)
∑

I+
αi = 1

∑
I−

αi = 1

The inseparable case: Outliers: ,

min
ω,b,ρ

1
2 ||ω||

2 − 2ρ + µ
∑

i ξi

s.t. yi(ωT xi + b) ≥ ρ− ξi, ξi ≥ 0 ∀i (4)

1the dual is

min
α

∑
i,j αiαj yiyj xT

i xj

s.t. 0 ≤ αi ≤ µ ∀i (5)
∑

I+
αi = 1

∑
I−

αi = 1

with
ω =

1
2

∑

i

αiyixi (6)

2

Soft margin SVM
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Given Points xi ∈ Rn , and class labels yi ∈ ±1
When looking at the optimisation problem of the SVM , we want to learn a linear

decision function to correctly classify our points
i.e. find ω ∈ Rn, b ∈ R s.t. sign(ωT xi + b) ≈ yi

We denote the indices corresponding to both classes by
I+ := {i | yi = +1} and
I− := {i | yi = −1}

min
ω,b,ρ

||ω||2 − 2ρ

s.t. yi(ωT xi + b) ≥ ρ ∀i (1)

one can observe that its dual,

min
α

∑
i,j αiαj yiyj xT

i xj

s.t. αi ≥ 0 ∀i (2)
∑

I+
αi = 1

∑
I−

αi = 1

which is nothing else than polytope distance:

min
α

||
∑

I+
αixi −

∑
I−

αixi||2

s.t. αi ≥ 0 ∀i (3)
∑

I+
αi = 1

∑
I−

αi = 1

The inseparable case: Outliers: ,

min
ω,b,ρ

1
2 ||ω||

2 − 2ρ + µ
∑

i ξi

s.t. yi(ωT xi + b) ≥ ρ− ξi, ξi ≥ 0 ∀i (4)

1

How can we allow outliers?



s.t. 0 ≤ αi ≤ µ ∀i (7)
∑

I+
αi = 1

∑
I−

αi = 1

with
ω =

1
2

∑

i

αiyixi (8)

RCH

RCH(X, µ) :=

{
∑

i

αixi

∣∣∣∣∣ 0 ≤ αi ≤ µ ∀i,
∑

i

αi = 1

}
(9)

3

Geometric Interpretation:

Reduced Convex Hulls



Geometric Interpretation:

Distance between reduced convex hulls

the dual is

min
α

∑
i,j αiαj yiyj xT

i xj

s.t. 0 ≤ αi ≤ µ ∀i (5)
∑

I+
αi = 1

∑
I−

αi = 1

with
ω =

1
2

∑

i

αiyixi (6)
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1



Path of the solution?

Solution path is piece-wise linear (Hastie et al. 2004)



Algorithms

• Standard QP solvers are too slow for large 
problems

• Currently used algorithms are approximation 
methods trying to use the special structure of 
the QP (e.g. SMO by Platt, 1999)

• Very few exact bounds are known on the 
speed as well as approximation quality



A geometric SVM 
Algorithm

Gilbert‘s Algorithm for Polytope Distance (1966)

Gilbert-Johnson-Keerthi (GJK) Algorithm
(used for collision detection)

A specialised, more widely know variant for 3D: 

(2006)



Geometric Interpretation:
• At gi: Look at the 

direction to the origin

• Find the vertex v that 
has the largest 
projection into that 
direction

• Set gi+1 to be the 
point on the line 
segment [gi,v] closest 
to the origin 



• Does it work for reduced convex hulls as well?

• yes, the longest projection of a reduced 
convex hull in a given direction can be 
calculated fast (without having to deal 
with its exponentially many vertices)

Gilbert‘s Algorithm
s.t. 0 ≤ αi ≤ µ ∀i (7)

∑
I+

αi = 1
∑

I−
αi = 1

with
ω =

1
2

∑

i

αiyixi (8)

RCH

RCH(X, µ) :=

{
∑

i

αixi

∣∣∣∣∣ 0 ≤ αi ≤ µ ∀i,
∑

i

αi = 1

}
(9)

If (i1, . . . , im) is an decreasing ordering of the projections 〈xi, p〉 of the points xi along
the direction p (with ||p|| = 1), then the extreme point of the RCH(X, µ) with largest
projection in direction p is given by

µ
m∑

j=1

xij + (1−mµ)xim+1 (10)

where m = &1/µ'
If (i1, . . . , im) is an decreasing ordering of the projections 〈xi, p〉 of the points xi along
the direction p (with ||p|| = 1), then the largest projection of all extreme points of the
RCH(X, µ) in direction p is given by

µ
m∑

j=1

〈xij , p〉+ (1−mµ)〈xim+1 , p〉 (11)

where m = &1/µ'

Smallest enclosing ball

min
α

αT Kα− diag(K)α

s.t. αi ≥ 0 ∀i (12)
∑

i αi = 1
(13)

compared to SVM which was

min
α

αT Kα

s.t. αi ≥ 0 ∀i (14)
∑

I+
αi = 1

∑
I−

αi = 1

3

s.t. 0 ≤ αi ≤ µ ∀i (7)
∑

I+
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∑
I−
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1
2
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i
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where m = &1/µ'

Smallest enclosing ball

min
α

αT Kα− diag(K)α

s.t. αi ≥ 0 ∀i (12)
∑

i αi = 1
(13)

compared to SVM which was

min
α

αT Kα

s.t. αi ≥ 0 ∀i (14)
∑

I+
αi = 1

∑
I−

αi = 1

3

s.t. 0 ≤ αi ≤ µ ∀i (7)
∑

I+
αi = 1

∑
I−

αi = 1

with
ω =

1
2

∑

i

αiyixi (8)

RCH

RCH(X, µ) :=

{
∑

i

αixi

∣∣∣∣∣ 0 ≤ αi ≤ µ ∀i,
∑

i

αi = 1

}
(9)

If (i1, . . . , im) is an decreasing ordering of the projections 〈xi, p〉 of the points xi along
the direction p (with ||p|| = 1), then the extreme point of the RCH(X, µ) with largest
projection in direction p is given by

µ
m∑
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where m = &1/µ'
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RCH(X, µ) in direction p is given by

µ
m∑

j=1

〈xij , p〉+ (1−mµ)〈xim+1 , p〉 (11)

where m = &1/µ'

Smallest enclosing ball

min
α

αT Kα− diag(K)α

s.t. αi ≥ 0 ∀i (12)
∑

i αi = 1
(13)

compared to SVM which was

min
α

αT Kα

s.t. αi ≥ 0 ∀i (14)
∑

I+
αi = 1

∑
I−

αi = 1

3



LP-type problems

Random sampling was successfully used to give the 
first provably fast randomised algorithm for SVMs.

Disadvantage: not a good bound for high dimensions

(2001)



s.t. 0 ≤ αi ≤ µ ∀i (7)
∑

I+
αi = 1

∑
I−

αi = 1

with
ω =

1
2

∑

i

αiyixi (8)

RCH

RCH(X, µ) :=

{
∑

i

αixi

∣∣∣∣∣ 0 ≤ αi ≤ µ ∀i,
∑

i

αi = 1

}
(9)

Smallest enclosing ball

min
α

αT Kα− diag(K)α

s.t. αi ≥ 0 ∀i (10)
∑

i αi = 1
(11)

compared to SVM which was

min
α

αT Kα

s.t. αi ≥ 0 ∀i (12)
∑

I+
αi = 1

∑
I−

αi = 1

3

Core Vector Machines

Translation to the Smallest Enclosing Ball problem

s.t. 0 ≤ αi ≤ µ ∀i (7)
∑

I+
αi = 1

∑
I−

αi = 1

with
ω =

1
2

∑

i

αiyixi (8)

RCH

RCH(X, µ) :=

{
∑

i

αixi

∣∣∣∣∣ 0 ≤ αi ≤ µ ∀i,
∑

i

αi = 1

}
(9)

Smallest enclosing ball

min
α

αT Kα− diag(K)α

s.t. αi ≥ 0 ∀i (10)
∑

i αi = 1
(11)

compared to svm which was

min
α

αT Kα

min
α

∑
i,j αiαj yiyj xT

i xj

s.t. 0 ≤ αi ∀i (12)
∑

I+
αi = 1

∑
I−

αi = 1

3

Advantage: very fast core set algorithms exist

provable speed and 

provable approximation quality

(2005)



Geometric Interpretation:

Smallest Enclosing Ball

Brief Article
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February 27, 2008

Given Points xi ∈ Rn , and class labels yi ∈ ±1
When looking at the optimisation problem of the SVM , we want to learn a linear

decision function to correctly classify our points
i.e. find ω ∈ Rn, b ∈ R s.t. sign(ωT xi + b) ≈ yi

We denote the indices corresponding to both classes by
I+ := {i | yi = +1} and
I− := {i | yi = −1}

min
ω,b,ρ

||ω||2 − 2ρ

s.t. yi(ωT xi + b) ≥ ρ ∀i (1)

one can observe that its dual,

min
α

∑
i,j αiαj yiyj xT

i xj

s.t. αi ≥ 0 ∀i (2)
∑

I+
αi = 1

∑
I−

αi = 1

with
ω =

1
2

∑

i

αiyixi (3)

2ω
which is nothing else than polytope distance:

min
α

||
∑

I+
αixi −

∑
I−

αixi||2

s.t. αi ≥ 0 ∀i (4)
∑

I+
αi = 1

∑
I−

αi = 1

1



Thanks


